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Abstract. The compound nucleus formation is considered as a two-step process of touching and subse-
quent tunneling of the projectile into the target. The deep minima in the potential energy curve are due to
shell effects in the experimental binding energies and give possible target-projectile combinations for the
synthesis of heavy and superheavy elements. The asymmetric channels thus obtained are in remarkable
agreement with the known experimental channels. In our model, the colliding partners are first shown to
be captured in the pocket behind the outer (touching) barrier and the composite system so formed finally
tunnels through the inner (fusion) barrier to form the resulting compound nucleus. These calculations
reveal the importance of the fusion barrier, which occur only for the asymmetric target-projectile combi-
nations. The calculated fusion cross-sections show a reasonable comparison with the observed one-neutron
evaporation residue cross-sections. An estimate of the excitation energy carried by the compound nucleus
is also obtained from our model calculations.

PACS. 24.10.-i Nuclear-reaction models and methods – 25.70.Gh Compound nucleus – 25.70.Jj Fusion
and fusion-fission reactions – 25.60.Pj Fusion reactions

1 Introduction

Formation of new elements became a reality in the middle
of the last century, when Fermi and coworkers bombarded
an uranium target with neutrons. This led to the forma-
tion of new elements beyond Z = 92 through neutron
capture with subsequent β-decay. This method achieved
a remarkable success in the production of heavy elements
till Z = 100 was reached, where spontaneous fission termi-
nated the periodic table. This termination limit gave birth
to a new era of the formation of heavy and superheavy el-
ements (SHE) with heavy-ion beams. Beams ranging from
α-particle upto 86Kr and targets as heavy as 208Pb and
heavier radioactive nuclei have now been used to form el-
ements with a maximum nuclear charge Z = 116 [1–6].

Mainly, two types of fusion processes are known for the
synthesis of SHE, namely, above and below the Coulomb
barrier. The former approach uses transuranium targets
and involves the formation of compound nuclei with ex-
citation energy large enough to evaporate ∼ 3 nucleons
before reaching the ground state. The latter approach
(hereafter referred to as fusion process II) aims to use
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closed-shell target-projectile combinations to form the
compound nuclei with low excitation energy, such that
only ∼ 1 neutron may be evaporated. In this fusion pro-
cess, the enhanced cross-section is observed at an incident
energy below the interaction barrier.

In this paper, the fusion process II is considered as
a two-step quantum-mechanical process of touching and
subsequent tunneling of the projectile into the target.
Here, the most appropriate channels (i.e. target-projectile
combinations) are located from the deep minima in the po-
tential energy curve. We use the asymmetric two-center
shell model (ATCSM) [7–12] for calculating the adiabatic
interaction potential for the symmetric as well as the
asymmetric channels. In case of asymmetric channels the
fusion barriers are seen, which are penetrated to form the
compound nuclei. Within our model calculations, we are
able to get an estimate of the excitation energy carried by
the compound nucleus.

We would like to point out that the two-step model
proposed by Shen et al. [13] is based on statistical theory
and is applicable to the hot-fusion process.

A complete model is presented in sect. 2. Section 3
highlights the results and discussion. Finally, conclusions
are presented in sect. 4.
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2 The model

Since the compound-nucleus formation is a two-step pro-
cess, it involves a knowledge of i) the preformation (touch-
ing) probability, PCN and ii) the tunneling probability,
PR, of the confining nuclear interaction barrier. Both these
quantities are obtained by using a dynamical theory, based
on the ATCSM. We introduce the relevant degrees of free-
dom of mass and charge asymmetries of two fragments,

ηA =
(A1 −A2)

A
, and ηZ =

(Z1 − Z2)

Z
, (1)

in addition to the usual coordinates of relative separation,
~R, deformations of the colliding nuclei, βi (i = 1, 2), and
the neck parameter, ε.

In principle, these two steps, involving ηA (or ηZ) and
R are coupled. The stationary Schrödinger equation in the
coupled η (= ηA or ηZ) and R can be written as

H(η,R)Ψν(η,R) = EνΨν(η,R). (2)

Here, the quantum number ν = 0, 1, 2, . . . counts the vi-
brational states Ψν in the potential. However, it has al-
ready been shown that the coupling effects of R to η in
the potential are very small, at least for the fission charge
distribution [14] and α-particle transfer resonances [15].
Also, it is known that the cranking coupling masses BRηA

and BRηZ are very small such that BRηA ¿
√

BRRBηAηA

and BRηZ ¿
√

BRRBηZηZ hold good [11,16]. Further-
more, an experimental support for this assumption is also
given in ref. [17], at least for the nuclear charge, indicat-
ing that the division of the nuclear charge is decided much
earlier than for neutrons, so that on the way to scission
the two nascent fragments are polarized by the Coulomb
repulsion and they are linked by a neutron-rich neck. In
view of these results, the Schrödinger equation (2), within
decoupled approximation

Ψν(η,R) = ψν(η)φν(R) (3)

separates into the following two equations:

[
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νψν(η),
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φν(R) = E2
νφν(R),

(5)
with

Eν = E1
ν + E2

ν . (6)

2.1 The preformation probability, PCN

Consider the first step of the fusion process II, wherein we
calculate the compound-nucleus preformation probability,
PCN . This quantum-mechanical probability of selecting
the fragments A1 and A2 (with fixed charge asymmetry,
ηZ) at a fixed point R of the relative motion is obtained

by solving eq. (4). It is solved numerically at the touching
configurationRt (= R1+R2,Ri being radii of two colliding
partners). At this configuration, the collective potential
can be expressed simply as

V (η) |Rt
= −B1(A1, Z1)−B2(A2, Z2) + EC + VP . (7)

Here, Ai, Zi (i = 1, 2) are fixed by minimizing in the
charge asymmetry, the sum of the two binding energies,
Bi(Ai, Zi) (taken from ref. [18] in terms of their mass ex-

cess), the Coulomb interaction EC (= Z1Z2e
2

Rt
) and the

proximity potential, VP (which is calculated by using the
formalism of Blocki et al. [19]). In these calculations,
we have varied the mass asymmetry, ηA, in step of two-
nucleon transfer.

The mass parameters, Bηη, for the kinetic energy term
in eq. (4) are calculated by using the model of Kroger and
Scheid [20]. This classical model gives a simple analytical
expression for the mass parameters, whose predictions are
known to compare nicely with the microscopic calculations
of Yamaji et al. [21].

Knowing the potential and mass parameters, eq. (4)
is solved numerically. Then, | ψ(η) |2 is the probability
of finding the target-projectile combination at the posi-
tion Rt, which when normalized gives the preformation
probability

PCN = | ψ(η) |2
√

Bηη

4

A
. (8)

Here, the normalization is numerically checked. If only
the ground state contributes and there is a complete adi-
abaticity, then ν = 0. However, if the system were excited
or we allowed the effects of the interaction with other de-
grees of freedom, then higher values of ν would contribute.
The possible consequences of such excitations are included
here through the simple Boltzmann-like occupation of ex-
cited states

| ψ(η) |2 =

∑

ν | ψν |
2
exp

(

−E1
ν

Θ

)

∑

ν exp(−E1
ν

Θ
)

. (9)

Here, Θ is the nuclear temperature (in MeV) and is related
to the excitation energy E∗ by the following statistical
expression [22]:

Θ =

√

10E∗

A
(10)

with E∗ = Ecm − Q. Since the excitation energy in the
fusion process II is small, we have considered only the
ground-state preformation probability in our present cal-
culations.

2.2 The tunneling probability, PR

In the second step of our model, we have considered the
fusion of two touching partners to form the resulting com-
pound nucleus. The interaction potential, V (R) in eq. (5),
is calculated by using the ATCSM [16]. The ATCSM gives
the total potential as a sum of the fluctuating part of the
level density (the shell correction term) arising from the
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Table 1. An adiabatic interaction potential, V (R), and ATCSM parameters for 256

102No using the symmetric channel
124Sn + 132Te. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.21 .0246 0. 1.34 1.26 −0.30 0.28 9.40 8.84 7.02 7.02 7.02 5.49 1804.1081 4.6249 −0.3709

1.225 .0257 0. 1.36 1.28 −0.34 0.32 9.48 8.92 6.97 6.97 6.97 6.78 1804.1483 2.9987 −1.7259

1.25 .0331 0. 1.38 1.30 −0.54 0.51 9.48 8.92 6.87 6.86 6.87 7.04 1804.2047 −0.7216 1.0432

1.30 .0265 0. 1.39 1.32 −1.14 1.08 9.25 8.75 6.65 6.63 6.64 8.00 1804.2499 −10.5972 1.8820

1.35 .0320 0. 1.31 1.24 −2.49 2.34 8.31 7.85 6.35 6.33 6.34 8.05 1804.0976 1.3102 0.0470

1.40 .0282 0. 1.21 1.17 −3.73 3.57 7.40 7.08 6.11 6.05 6.08 8.56 1803.5928 −2.3205 1.1396

1.425 .0305 0. 1.12 1.07 −4.70 4.47 6.66 6.33 5.95 5.92 5.92 8.87 1803.1860 −1.7979 0.8838

1.45 .0349 0.04 1.10 1.02 −5.25 4.89 6.43 5.99 5.84 5.87 5.78 9.13 1802.7374 −0.5617 0.2935

1.50 .0310 0.08 1.04 1.01 −5.90 5.66 6.01 5.77 5.77 5.71 5.51 9.67 1801.5241 1.1920 0.4242

1.55 .0304 0.10 0.95 0.92 −6.91 6.62 5.40 5.18 5.68 5.63 5.17 10.60 1799.9150 1.6422 1.1325

1.629 .0237 1.00 1.00 1.00 −6.40 6.27 6.40 6.27 6.40 6.27 0.0729 13.31 1824.1297 −10.5216 0.5379

2.20 .0274 1.00 1.00 1.00 −10.85 10.63 6.44 6.31 6.44 6.31 0.00 22.3 1681.3493 −10.5294 0.7573

Table 2. An adiabatic interaction potential, V (R), and ATCSM parameters for 256

102No using the asymmetric channel
48Ca + 208Pb. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.20 .626 0. 1.59 0.57 −3.10 0.96 11.15 3.45 7.02 6.06 6.25 7.10 1807.5246 −4.1931 1.6059

1.25 .626 0. 1.68 0.61 −3.26 1.02 11.56 3.61 6.88 5.91 6.11 7.39 1807.3628 2.1074 0.0686

1.30 .624 0. 1.78 0.64 −3.45 1.07 11.99 3.72 6.73 5.81 5.99 7.74 1807.1693 6.1389 −1.5779

1.35 .621 0. 1.83 0.67 −3.92 1.23 12.07 3.79 6.59 5.65 5.84 8.13 1806.9355 3.2905 0.0944

1.40 .623 0. 1.91 0.70 −4.23 1.33 12.34 3.88 6.46 5.54 5.72 8.43 1806.6478 0.8867 0.6234

1.45 .617 0. 1.60 0.64 −6.94 2.31 9.98 3.32 6.24 5.19 5.40 9.18 1806.0897 0.4128 0.9860

1.50 .619 0. 1.54 0.65 −7.92 2.73 9.43 3.25 6.12 5.01 5.23 9.65 1805.4018 0.8818 0.1403

1.55 .621 0. 1.38 0.57 −9.82 3.34 8.17 2.78 5.92 4.88 5.09 10.30 1804.3646 1.8154 0.1726

1.567 .619 1.00 1.00 1.00 −7.55 4.63 7.55 4.63 7.55 4.63 0.001 12.94 1841.0534 −12.3206 2.2663

2.40 .625 1.00 1.00 1.00 −15.47 9.49 7.67 4.70 7.67 4.70 0.00 25.70 1793.0726 −15.4701 2.3177

Table 3. An adiabatic interaction potential, V (R), and ATCSM parameters for 258

104Rf using the symmetric channel
122Sn + 136Xe. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.19 .0458 0. 1.33 1.20 −0.33 0.30 9.44 8.50 7.10 7.09 7.09 6.43 1856.7516 10.1293 −3.5735

1.25 .0741 0. 1.41 1.27 −0.55 0.50 9.71 8.74 6.89 6.88 6.88 7.82 1856.8080 −7.7307 1.2598

1.30 .0450 0. 1.38 1.26 −1.48 1.34 9.15 8.31 6.63 6.59 6.61 8.05 1856.7252 −11.6879 2.0181

1.35 .0540 0. 1.24 1.14 −3.21 2.92 7.81 7.12 6.30 6.24 6.27 8.19 1856.3624 −0.1965 0.8364

1.40 .0514 0. 1.17 1.09 −4.25 3.91 7.12 6.55 6.09 6.01 6.05 8.66 1855.5935 −2.1500 0.9294

1.45 .0507 0.04 1.07 1.02 −5.36 5.01 6.33 5.92 5.92 5.80 5.77 9.19 1854.4726 −1.0877 0.7100

1.475 .0563 0.07 1.07 0.98 −5.81 5.29 6.24 5.67 5.83 5.79 5.63 9.47 1853.7664 −0.2489 0.7454

1.50 .0542 0.08 0.94 0.89 −6.68 6.22 5.44 5.06 5.79 5.68 5.37 10.00 1852.9258 1.3320 1.0969

1.55 .0504 0.11 0.93 0.89 −7.14 6.69 5.34 5.01 5.75 5.63 5.10 10.80 1851.0141 1.2861 1.0189

1.631 .0415 1.00 1.00 1.00 −6.47 6.24 6.47 6.24 6.47 6.24 0.0001 13.36 1875.0289 −8.0520 0.7497

2.40 .0464 1.00 1.00 1.00 −12.57 12.13 6.48 6.25 6.48 6.25 0.00 25.5 1737.8455 −8.7065 1.1191
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Table 4. An adiabatic interaction potential, V (R), and ATCSM parameters for 258

104Rf using the asymmetric channel
50Ti + 208Pb. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.20 .614 0. 1.59 0.57 −3.10 0.97 11.15 3.50 7.01 6.14 6.32 7.11 1860.0925 −3.7997 −1.5626

1.25 .615 0. 1.69 0.61 −3.20 1.01 11.62 3.66 6.88 6.01 6.18 7.39 1859.8247 2.7123 −0.3059

1.30 .613 0. 1.79 0.64 −3.39 1.06 12.05 3.78 6.73 5.90 6.07 7.74 1859.5126 5.9744 −1.4986

1.32 .610 0. 1.78 0.65 −3.76 1.19 11.87 3.77 6.67 5.80 5.98 7.94 1859.3759 5.4398 −0.8169

1.35 .610 0. 1.83 0.67 −3.92 1.25 12.06 3.84 6.59 5.73 5.91 8.14 1859.1420 3.3890 0.1025

1.40 .610 0. 1.86 0.70 −4.48 1.45 12.01 3.89 6.45 5.56 5.75 8.49 1858.7098 −0.0323 1.1189

1.41 .610 0. 1.86 0.70 −4.66 1.51 11.94 3.87 6.42 5.53 5.72 8.56 1858.6117 −0.0892 1.0322

1.42 .604 0. 1.51 0.63 −6.90 2.40 9.53 3.31 6.31 5.26 5.48 9.04 1858.3756 0.6233 0.9024

1.425 .604 0. 1.51 0.63 −6.98 2.43 9.51 3.30 6.30 5.24 5.46 9.08 1858.2946 0.5892 0.9549

1.45 .605 0. 1.48 0.64 −7.43 2.65 9.25 3.29 6.25 5.14 5.37 9.32 1857.8730 0.2112 0.5970

1.50 .606 0. 1.42 0.63 −8.50 3.08 8.68 3.14 6.11 4.99 5.22 9.78 1856.9410 −0.8575 0.4433

1.55 .593 0. 1.34 0.57 −8.90 3.59 8.32 3.36 6.12 4.73 5.03 10.19 1855.6258 −0.2823 0.4124

1.575 .615 1.0 1.00 1.00 −7.57 4.71 7.57 4.71 7.57 4.71 0.0001 13.03 1893.3430 −8.6498 2.1935

2.40 .628 1.0 1.00 1.00 −15.59 9.70 7.48 4.66 7.48 4.66 0.0 26.10 1797.7827 −12.7734 2.2668

Table 5. An adiabatic interaction potential, V (R), and ATCSM parameters for 260

106Sg using the symmetric channel
122Sn + 138Ba. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.20 .0824 0. 1.34 1.19 −0.49 0.44 9.46 8.38 7.06 7.04 7.05 6.41 1909.7666 11.2108 −7.9620

1.25 .0656 0. 1.38 1.23 −0.89 0.79 9.46 8.41 6.86 6.84 6.85 7.13 1909.6930 1.2530 −0.0129

1.30 .0638 0. 1.30 1.17 −2.22 1.98 8.51 7.61 6.55 6.51 6.53 7.73 1909.4878 4.6597 −0.5785

1.35 .0606 0. 1.23 1.13 −3.30 2.99 7.77 7.05 6.32 6.23 6.27 8.22 1908.8763 −1.0623 1.1815

1.40 .0594 0. 1.16 1.07 −4.40 4.00 7.07 6.43 6.10 6.01 6.05 8.68 1907.8740 −2.3262 1.2448

1.425 .0593 0.04 1.07 1.00 −5.21 4.78 6.41 5.88 5.99 5.88 5.85 9.03 1907.1744 −0.8166 0.6986

1.45 .0624 0.06 1.02 0.94 −5.86 5.33 6.02 5.47 5.90 5.82 5.69 9.37 1906.4087 0.4124 0.3804

1.475 .0601 0.08 0.96 0.92 −6.29 5.86 5.65 5.27 5.88 5.73 5.51 9.73 1905.5491 0.2953 0.8585

1.50 .0612 0.09 0.93 0.88 −6.77 6.26 5.42 5.01 5.83 5.70 5.34 10.1 1904.5078 1.3631 0.9671

1.55 .0522 0.10 0.82 0.78 −7.82 7.25 4.75 4.41 5.80 5.66 4.89 11.80 1902.1796 −2.2055 1.4350

1.631 .0502 1.00 1.00 1.00 −6.51 6.24 6.51 6.24 6.51 6.24 0.0001 13.39 1925.2219 −5.6790 0.2514

2.40 .0552 1.00 1.00 1.00 −12.64 12.13 6.51 6.25 6.51 6.25 0.00 25.5 1783.2808 −6.4197 0.9692

quantal shell correction and the liquid-drop energy, VLDM
(sum of the Coulomb and the surface energies) with the
parameters of Myers and Swiatecki [23]. We define

V (R) = VLDM + δu+ δp, (11)

where δu and δp are the shell and the pairing contribu-
tions, respectively.

Here, the adiabatic interaction potentials are cal-
culated by carrying out a self-consistent minimization
of the total energy (eq. (11)) in the shape parameters
βi (i = 1, 2), ε and the dynamical mass asymmetry pa-
rameter, ηA. These potentials along with their shape pa-
rameters are given in tables 1-10 for both symmetric and
asymmetric channels of five systems with Z = 102, 104,
106, 108 and 110. Also, we have plotted the interaction
potential, V (R), vs. the Rcm both for the asymmetric and

the symmetric channels, respectively, in figs. 3 and 4 fur-
ther on. In fig. 3, a double-humped barrier arises in each
system, namely, the outer (touching) barrier and the inner
(fusion) barrier. Whereas in fig. 4, no such double-humped
barrier is seen. In the fusion process II, the incoming sys-
tem gets captured in the pocket behind the touching bar-
rier and subsequently tunnels through the fusion barrier to
form a compound nucleus. For the penetration probabil-
ity, PR, we solve eq. (5) by using the WKB approximation
with constant mass, i.e. BRR = µ (µ being the reduced
mass of the combination) and is given by

PR = exp

[

− 2

~

∫ Rf

Ri

√

2µ(V (R)− V (Ri))dR

]

. (12)

The first (inner) turning point in the WKB penetrabil-
ity integral is chosen at Ri = RC , the compound-nucleus
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Table 6. An adiabatic interaction potential, V (R), and ATCSM parameters for 260

106Sg using the asymmetric channel
54Cr + 206Pb. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.20 .588 0. 1.55 0.58 −3.25 1.08 10.84 3.60 6.99 6.21 6.38 7.14 1912.9874 −2.3741 1.2030

1.25 .587 0. 1.62 0.62 −3.52 1.19 11.10 3.74 6.85 6.04 6.22 7.47 1912.5866 3.7763 −0.6147

1.275 .587 0. 1.67 0.63 −3.64 1.21 11.31 3.78 6.77 6.00 6.16 7.64 1912.3548 5.6472 −0.7972

1.30 .585 0. 1.71 0.65 −3.75 1.26 11.47 3.85 6.71 5.92 6.09 7.83 1912.1090 5.8632 −1.3366

1.35 .581 0. 1.73 0.68 −4.36 1.50 11.36 3.90 6.57 5.73 5.92 8.25 1911.5537 1.5764 0.7561

1.375 .577 0. 1.60 0.70 −5.29 1.95 10.42 3.84 6.51 5.49 5.71 8.56 1911.2262 0.4633 1.2642

1.40 .578 0. 1.60 0.71 −5.64 2.10 10.31 3.84 6.44 5.40 5.64 8.75 1910.8546 0.4146 1.1285

1.45 .580 0. 1.41 0.64 −7.68 2.90 8.78 3.32 6.23 5.18 5.42 9.37 1909.6871 −0.0962 0.3944

1.505 .581 0.00 1.24 0.55 −9.72 3.62 7.43 2.77 5.99 5.03 5.24 10.10 1908.2608 −1.7252 0.7845

1.55 .585 0.00 1.25 0.56 −10.26 3.84 7.37 2.76 5.90 4.93 5.15 10.6 1906.8925 −1.4690 1.3258

1.606 .574 1.00 1.00 1.07 −7.52 5.03 7.52 5.03 7.52 4.71 0.0001 13.29 1938.8603 −2.8143 −0.0523

2.40 .609 1.00 1.00 1.074 −15.00 10.06 7.46 5.01 7.46 5.01 0.00 25.80 1841.2310 −5.0103 1.2224

Table 7. An adiabatic interaction potential, V (R), and ATCSM parameters for 266

108Hs using the symmetric channel
132Xe + 134Xe. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.25 .0085 0. 1.32 1.30 −0.81 0.79 9.12 8.98 6.91 6.91 6.91 7.19 1954.8276 1.9874 −0.5051

1.30 .0077 0. 1.18 1.17 −2.61 2.58 7.69 7.61 6.52 6.50 6.51 7.88 1954.4878 4.2412 −0.6108

1.35 .0064 0. 1.13 1.13 −3.55 3.53 7.11 7.08 6.29 6.26 6.28 8.35 1953.6435 −1.0045 1.1632

1.40 .0061 0. 1.07 1.07 −4.55 4.53 6.51 6.47 6.08 6.05 6.06 8.81 1952.3939 −1.6676 1.0577

1.45 .0063 0.07 0.98 0.98 −5.65 5.62 5.81 5.78 5.93 5.89 5.71 9.47 1950.6561 −0.2726 0.8017

1.50 .0073 0.10 0.89 0.89 −6.65 6.62 5.20 5.17 5.84 5.81 5.32 10.34 1948.3953 −0.8074 1.2489

1.55 .0088 0.10 0.78 0.78 −7.72 7.68 4.53 4.50 5.80 5.77 4.87 12.09 1945.6107 −4.7025 0.5840

1.629 .0067 1.00 1.00 1.00 −6.43 6.40 6.43 6.40 6.43 6.40 0.1269 13.48 1966.8100 −6.2971 −0.3755

2.40 .0082 1.00 1.00 1.00 −12.51 12.44 6.45 6.41 6.45 6.41 0.00 25.7 1821.2930 −6.7573 0.0731

Table 8. An adiabatic interaction potential, V (R), and ATCSM parameters for 266

108Hs using the asymmetric channel
58Fe + 208Pb. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.20 .564 0. 1.58 0.63 −2.75 0.97 11.22 3.97 7.10 6.30 6.49 7.13 1958.0822 −3.1195 1.0510

1.25 .562 0. 1.60 0.68 −3.24 1.20 11.14 4.12 6.96 6.05 6.26 7.50 1957.6259 2.3965 −0.0057

1.275 .560 0. 1.52 0.65 −4.30 1.60 10.35 3.84 6.81 5.91 6.11 7.86 1957.3229 5.4984 −1.1989

1.30 .559 0. 1.54 0.66 −4.57 1.70 10.37 3.85 6.73 5.83 6.04 8.07 1956.9837 5.0045 −0.6797

1.35 .556 0. 1.58 0.69 −5.04 1.89 10.42 3.92 6.59 5.68 5.89 8.43 1956.2195 1.4697 1.3752

1.40 .559 0. 1.55 0.70 −5.94 2.29 9.99 3.84 6.45 5.49 5.71 8.83 1955.3259 −0.3106 1.5800

1.45 .559 0. 1.35 0.63 −7.99 3.14 8.41 3.31 6.23 5.25 5.48 9.48 1953.9038 −0.6669 0.9622

1.50 .561 0.00 1.19 0.55 −9.82 3.84 7.17 2.80 6.03 5.09 5.31 10.30 1952.3635 −2.7272 1.6181

1.55 .566 0.00 1.23 0.56 −10.35 4.00 7.27 2.81 5.91 5.02 5.22 10.7 1950.6157 −2.4305 1.6720

1.581 .536 1.00 1.00 1.00 −7.59 4.92 7.54 4.92 7.54 4.92 0.0001 13.19 1984.8329 −4.6162 0.7099

2.40 .563 1.00 1.00 1.00 −15.39 10.05 7.48 4.89 7.48 4.89 0.00 26.20 1877.1677 −4.5272 0.7430
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Table 9. An adiabatic interaction potential, V (R), and ATCSM parameters for 272

110X using the symmetric channel 132Te + 140Ce.
Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.20 .0149 0. 1.30 1.24 −0.43 0.41 9.32 8.88 7.17 7.16 7.17 6.33 2000.6109 7.2117 0.7031

1.25 .0214 0. 1.31 1.25 −1.10 1.04 9.06 8.64 6.92 6.91 6.91 7.86 2000.3604 −5.2503 0.9108

1.30 .0257 0. 1.22 1.17 −2.51 2.40 8.04 7.69 6.59 6.57 6.58 7.89 1999.8361 4.5918 −0.8570

1.35 .0235 0. 1.06 1.03 −4.26 4.11 6.65 6.41 6.27 6.23 6.25 8.53 1998.7797 −0.8800 1.0304

1.40 .0226 0. 0.98 0.96 −5.34 5.18 5.94 5.76 6.06 6.00 6.03 9.01 1997.2714 −1.2851 1.0876

1.45 .0249 0.07 0.88 0.85 −6.51 6.26 5.23 5.02 5.94 5.91 5.59 9.87 1995.1786 −1.9478 1.0926

1.50 .0223 0.10 0.86 0.84 −7.03 6.80 5.07 4.91 5.90 5.85 5.28 10.70 1992.6348 −2.1173 1.4052

1.55 .0154 0.11 0.77 0.76 −7.91 7.71 4.55 4.43 5.90 5.83 4.79 12.50 1989.4268 −9.8654 1.7786

1.629 .0155 1.00 1.00 1.00 −6.52 6.41 6.52 6.41 6.52 6.41 0.0979 13.58 2009.7338 −9.0951 −0.3938

2.20 .0191 1.00 1.00 1.00 −11.05 10.87 6.56 6.45 6.56 6.45 0.00 22.7 1850.9216 −8.9159 0.3472

Table 10. An adiabatic interaction potential, V (R), and ATCSM parameters for 272

110X using the asymmetric channel
64Ni + 208Pb. Here, the units of lengths and energies are in Fermi and MeV, respectively.

λ η ε β1 β2 z1 z2 a1 a2 b1 b2 Neck Rcm VLDM δu δp

1.20 .528 0. 1.58 0.66 −2.54 0.96 11.29 4.26 7.15 6.46 6.63 7.22 2003.1966 −3.1696 1.0538

1.25 .532 0. 1.64 0.69 −2.95 1.12 11.44 4.34 6.98 6.29 6.46 7.49 2002.6707 1.5155 0.0046

1.30 .532 0. 1.72 0.73 −3.18 1.21 11.76 4.48 6.84 6.14 6.31 7.84 2002.0402 4.5092 −1.1805

1.35 .523 0. 1.49 0.69 −5.45 2.20 9.81 3.97 6.59 5.75 5.96 8.55 2001.1486 2.4270 0.3195

1.40 .524 0. 1.39 0.69 −6.66 2.82 8.95 3.79 6.44 5.49 5.73 9.04 1999.9810 −0.6384 1.6370

1.45 .524 0. 1.25 0.63 −8.32 3.56 7.80 3.34 6.24 5.30 5.53 9.62 1998.2822 −1.9873 1.3318

1.50 .526 0.00 1.28 0.64 −8.88 3.78 7.83 3.33 6.11 5.20 5.43 10.00 1996.5785 −2.1045 0.9663

1.55 .536 0.00 1.18 0.55 −10.55 4.28 6.95 2.82 5.89 5.13 5.32 11.1 1994.5079 −2.3437 1.3969

1.589 .505 1.00 1.00 1.00 −7.53 5.08 7.53 5.08 7.53 5.08 0.0001 13.33 2026.8399 −9.8869 2.0347

2.40 .529 1.00 1.00 1.00 −15.13 10.22 7.61 5.14 7.61 5.14 0.00 25.90 1928.5531 8.0439 −1.5697

radius. The outer (second) turning point, Rf , is chosen
such that V (Rf ) = V (Ri). Here, the reverse choice of the
inner and the outer turning points is made on the basis of
the principle of detailed balance.

We solve the integral in eq. (12) analytically. For this
purpose, we parameterize the adiabatic interaction poten-
tial, V (R), (fig. 3) between the inner and outer turning
points by a second-order polynomial

V (R) = V0 − bR+ cR2; Ri ≤ R ≤ Rf . (13)

Here, the constants, V0, b, c are real and positive. Thus,
the transmission probability is given by

PR = exp

[

− 2

~

√

2µG

]

, (14)

with

G =
1

8c
3

2

[

2
√
c
(

−(b+ 2cRi)
√

a+Ri(b+ cRi)

+(b+ 2cRf )
√

a+Rf (b+ cRf )
)

+(b2 − 4ac)(T1 − T2)

]

, (15)

T1 = ln

(

b+ 2cRi√
c

+ 2
√

a+Ri(b+ cRi)

)

, (16)

T2 = ln

(

b+ 2cRf√
c

+ 2
√

a+Rf (b+ cRf )

)

(17)

and a = V0 − V (Ri).

2.3 The fusion cross-section

Finally, the compound-nucleus formation cross-section is
given by

σ = πλ2PCNPR , (18)

where λ is the de Broglie wavelength of the entrance chan-
nel. In eq. (18), both PCN and PR are normalized sepa-
rately. Also, in the fusion process II, the πλ2 remain nearly
constant. Therefore, in our calculations, we have chosen its
value equal to 1 fm2.

In this equation, we have not included the contribution
of the summation over the angular momentum due to the
following reasons.

Here, an angular momentum up to ∼ 20~ may con-
tribute to the fusion cross-section [2]. Both, PCN and PR
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depend on the angular momentum. An increase in angular
momentum increases the Ecm, which suppresses the shell
effects both in potential and mass parameters. This de-
crease in shell effects decreases the PCN [11]. Also, the
PR is expected to decrease with the increase in angu-
lar momentum. This decrease in PR can be understood
from eq. (12), in which the contribution of rotational en-
ergy (a positive quantity) in the potential is added. Thus,
the product PCN ×PR decreases significantly with the in-
crease in angular momentum. Therefore, in our present
study, we have not included the contribution of higher
angular-momentum summation terms.

3 Results and discussions

Here, we discuss the results of 256

102
No in some detail; the

results for other systems, namely, 258

104
Rf, 260

106
Sg, 266

108
Hs and

272

110
X are also given in a similar manner. Firstly, we search

for appropriate channels for the compound-nucleus forma-
tion. The potential energy V (ηZ) for the composite sys-
tems 256

102
No is calculated by using eq. (7) and is shown

by curve (a) in fig. 1. In these calculations, the nuclear
shell effects, which are important in the fusion process II,
are included through the experimental binding energies.
Curve (b) in fig. 1, refers to the potential V (ηZ) with
VP = 0, i.e. the sum of binding energies and the Coulomb
energy terms. The comparison of curves (a) and (b) re-
veals that the inclusion of VP does not bring any alteration
in these minima, except that the minima at large charge
asymmetry become slightly deeper. This evidently means
that the potential energy minima are mainly due to the
shell effects in the binding energies. Figure 1 shows two
deep minima, one refers to the symmetric or nearly sym-
metric combination (i.e. 124Sn + 132Te), whereas the other
corresponds to an asymmetric one (i.e. 48Ca + 208Pb).
Here, we would like to point out that the large asym-
metry region in the potential energy (i.e. 4He + 252Fm) is
considered for cluster emission [24] and is, therefore, not
suited for the compound-nucleus formation.

Similarly, the symmetric and the asymmetric channels
for other four systems 258

104
Rf, 260

106
Sg, 266

108
Hs and 272

110
X are

also seen in fig. 2, in which the potential, V (η), is plotted
vs. the mass asymmetry, ηA. Here, the proximity potential,
VP , is included. The symmetric and asymmetric channels
for all these five systems (Z = 102–110 with ∆Z = 2) are
labeled in tables 1-10. From the following discussion, it is
evident that only the asymmetric channels give rise to the
fusion process II.

Next, we explore the relative importance of symmetric
as well as asymmetric channels in the fusion process II.
Complete fusion is the one in which target and projec-
tile approach each other from R = ∞ and stick together
before being tunneled. This implies that no conditional
saddle is formed. In order to check this characteristic, we
have calculated the adiabatic interaction potential, V (R),
for Z = 102 to Z = 110, in step of ∆Z = 2, both
for symmetric as well asymmetric channels (as obtained
above) by carrying out a minimization of the total poten-
tial (VLDM + δu + δp) in the ATCSM shape parameters

102
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Fig. 1. (a) The potential V (η) vs. the charge asymmetry, ηZ ,
for the system 256

102No is calculated by using eq. (7). (b) The
potential with VP = 0.

(βi (i = 1, 2), ε and the dynamical mass asymmetry pa-
rameter, ηA) in a self-consistent manner. In these calcula-
tions, we have varied the elongation parameter λ from 2.40
to 1.20. The lower choice of the parameter λ (= 1.20) is
enough to ensure complete fusion (R1 +R2 ≤ R0;R0, be-
ing the radius of the compound nucleus). The interaction
potential, V (R), both for the asymmetric and the symmet-
ric target and projectile combination are shown in figs. 3
and 4, respectively. We also have given the potential and
the associated ATCSM shape parameters for all the five
systems (Z = 102–110 with ∆Z = 2) in tables 1-10. These
values in the tables clearly show the shape evolution of the
system from touching configuration to a complete overlap.

It is interesting enough to note from tables 1, 3, 5,
7 and 9 for the symmetric channels that a conditional
saddle is formed at the elongation parameter λ ∼ 1.45.
The appearance of saddle shape implies that the memory
of the incoming channel is still alive at such a large over-
lap (λ value 1.45). This observation contradicts the earlier
hypothesis of the compound-nucleus formation [25]. This
ruled-out possibility of the compound-nucleus formation
is further confirmed from fig. 4, in which the interaction
potential, V (R), is plotted as a function of Rcm. Since the
fusion barrier does not exist in any of the systems shown
in this figure, its absence implies that the probability of
forming the compound nucleus reduces to zero [11]. Re-
cently, it has also been pointed out in ref. [26] that the
symmetric combination leads to quasi-fission rather than
to compound-nucleus formation.

On the other hand, we do not see any saddle shape
in tables 2, 4, 6, 8 and 10. Also, the presence of a sig-
nificant fusion barrier is clearly seen in each case of the
asymmetric channels (see fig. 3). For example, the fusion
barrier is seen for 48Ca + 208Pb→ 256

102
No at RB = 7.74 fm.

Thus, the asymmetric target-projectile combinations sup-
port the compound-nucleus formation through the fusion
process II.

In this two-step process of “fusion following cap-
ture (touching)”, we have extracted an estimate of the
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Fig. 4. The adiabatic interaction potential, V (R), for the symmetric target-projectile combinations 124Sn + 132Te → 256

102No;
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122Sn + 138Ba → 260
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132Xe + 134Xe → 266

108Hs and 132Te + 140Ce → 272

110X.

excitation energy carried by the compound nucleus. Here,
the incoming system gets captured in the pocket behind
the touching barrier (fig. 3), before being tunneled through
the fusion barrier. This pocket in the potential energy
curve refers to the stable equilibrium position of the cap-
tured system and its energy value may be considered
equivalent to the ground state of the compound nucleus. It
is interesting to note that the values of Rcm at the pocket
position are nearly equal to the touching distance between
the two fragments. The excitation energy of the compound
nucleus, E∗, is defined as the height of the barrier mea-
sured from its ground state. We have chosen this height
equal to that of the outer-barrier height. This quantity is
calculated by taking the difference between the top and
bottom values of the barrier and they are are given in ta-
ble 11. Since it is a relative difference between the two
values, it is independent of the choice of the parameters
used in our model. The experimental values of E∗ are also
given in this table. A comparison between the calculated
and experimental values reveal that the calculated values
are higher by 8–15 MeV in all the five systems. It is worth
mentioning here that one of the reasons for this difference
is that we have not considered any angular-momentum

contribution in our calculations. An increase in angular
momentum decreases the height of the barrier [11] and
thus the excitation energy decreases.

Further, we have calculated the preformation prob-
ability, PCN , for 256

102
No by using the potential shown

by curve (a) in fig. 1. We use the model of Kroger
and Scheid [20] for the mass parameters, BηZηZ . The
normalized yield, PCN , vs. the charge number, Z, is
shown in fig. 5. Here, we have taken only the ground-state
contribution, as the excitation energy of the system 256

102
No

is quite small (see table 11). The peaks corresponding
to the asymmetric channel 48Ca + 208Pb → 256

102
No in

the normalized PCN appear along with the symmetric
channel 124Sn + 132Te → 256

102
No. It is interesting enough

to note that the touching probability, PCN , for the sym-
metric channel is twice as large as that of an asymmetric
channel, even though the symmetric channel does not
form the compound nucleus (as discussed below). We
have calculated the PCN for the other four systems 258

104
Rf,

260

106
Sg, 266

108
Hs and 272

110
X by using their potential (fig. 2)

together with the classical mass parameters. It is noticed
that the behavior and magnitude of PCN for all these five
systems are nearly the same. A nearly identical behavior
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Table 11. An estimation of threshold energy for the compound-nucleus reaction from the adiabatic interaction potential,
V (R).

Reaction E∗

cal (MeV) E∗

exp (MeV) Q value (MeV) Ecm (MeV)
48Ca + 208Pb → 256

102No 24.6465 16.0 153.796 178.4425
50Ti + 208Pb → 258

104Rf 31.1308 15.0 169.69 200.8208
54Cr + 206Pb → 260

106Sg 29.2444 15.0 187.33 216.5744
58Fe + 208Pb → 266

108Hs 31.0694 14.0 205.01 236.0794
64Ni + 208Pb → 272

110X 25.4299 12.2 225.16 250.5899

Table 12. Fitted potential parameters (in MeV), the penetration probability, PR, compound-nucleus cross-sections using
asymmetric channels. Here, PCN is taken as 2.555× 10−2. The experimental values of the cross-section are also given.

Nucleus V0 b c V (Ri) PR σcal (fm
2) σexp (fm

2)
256

102No 1910.43 20.8142 1.0405 1806.3526 8.0466× 10−4 2.0559× 10−5 1.3± 0.4× 10−5

258

104Rf 1925.14 −11.3152 0.4437 11855.7559 1.7761× 10−5 4.538× 10−7 1.0± 0.13× 10−6

260

106Sg 1990.74 −13.9139 0.5635 1906.7493 9.9647× 10−8 2.546× 10−9 5.0± 1.4× 10−8

266

108Hs 2036.60 −13.3493 0.4905 1949.8572 1.2518× 10−8 3.1982× 10−10 6.7± 0.75× 10−9

272

110X 2071.03 −11.2815 0.3837 1993.5578 7.4068× 10−10 1.8924× 10−11 1.5± 0.9× 10−9
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Fig. 5. The normalized compound-nucleus preformation prob-
ability, PCN , as a function of Z for a composite system 256

102No
with the VP contribution in the potential energy.

arises due to the absence of shell effects in the mass
parameters and it does not explain the observed behavior
of the cross-section. One must use the ATCSM states in
the adiabatic cranking formula for obtaining the mass
parameters [11,27]. This involves a lot of computational
work and hence these latter are not calculated here.

The tunneling probability, PR, is calculated by using
the analytical expressions (14)-(17). Here, the ATCSM po-
tentials (fig. 3) are fitted by the second-order polynomial
of eq. (13). The fitted potential parameters for the five sys-
tems (Z = 102–110 with ∆Z = 2) are given in table 12.
The limits of integration in eq. (12) are chosen from the
compound-nucleus radius to the pocket position (touching
configuration). The calculated PR values are given in this
table. We have calculated the fusion cross-section by us-
ing eq. (18) with constant value of PCN (= 2.555× 10−2,

i.e. the value of 48Ca + 208Pb → 256

102
No). In table 12,

both the calculated and experimental values of the cross-
sections are given. The experimental cross-sections, given
in this table, are one-neutron evaporation residue cross-
section. We notice that our calculated cross-section for
48Ca + 208Pb→ 256

102
No compares reasonably well with the

measured value. However, the calculated values for the
other four systems are off by a factor of 10 of the experi-
mental data.

It is remarkable to notice in table 12 that the behavior
of the calculated PR is fairly in agreement with the experi-
mental cross-section. Here, we would like to point out that
this nice comparison arises due to the total minimization
of the potential by using the ATCSM. If we extract the
PCN values (=

σexp
PR

), it shows an increasing trend with the
increase in size of the projectile. This behavior favors our
result (fig. 5) that the symmetric channel has larger PCN
than an asymmetric channel. Another interesting point
to note here is that an extracted value of the PCN for
48Ca +208 Pb → 256

102
No (= 1.6156 × 10−2) is reasonably

close to our calculated value (= 2.555× 10−2). These cal-
culations of the PCN certainly need an improvement by
using the cranking mass parameters.

In our model, we have realized the importance of PR.
However, the fusion barriers are completely absent in the
symmetric-channel cases (fig. 4). Therefore, the limits of
the integration (i.e. the termination points) in eq. (12)
are shifted to 0 and∞ (∼ 25 fm). Within these limits, PR
reduces to zero and hence the probability of forming the
compound nucleus vanishes. Therefore, in case of symmet-
ric channels, the appearance of a conditional saddle and
the absence of the fusion barrier force the system to quasi-
fission rather than forming the compound nucleus. These
conclusions are consistent with the recent observations of
ref. [26].
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4 Conclusions

Here, we have shown that the asymmetric minima in
the potential energy curves reproduce the experimentally
known channels for the compound-nucleus formation. This
technique, therefore, appears to be quite useful to predict
the channels for the production of new upcoming heavy
and superheavy nuclei. Our model calculations are also
able to give an estimate of the threshold energy for the fu-
sion process II. The existence of a fusion barrier is a must
for the formation of the compound nucleus. The shell ef-
fects in the potential and mass parameters appear to play
an important role in the fusion process II. The calculated
fusion cross-sections yield reasonably well the observed
one-neutron evaporation residue cross-section. However,
further refinements in the model are needed and are un-
derway.
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